
Implementing Data Cubes E�ciently�

Venky Harinarayan Anand Rajaraman

Stanford University

Je�rey D� Ullman

Abstract

Decision support applications involve complex queries on very large databases� Since response
times should be small� query optimization is critical� Users typically view the data as multi�
dimensional data cubes� Each cell of the data cube is a view consisting of an aggregation of
interest� like total sales� The values of many of these cells are dependent on the values of other
cells in the data cube� A common and powerful query optimization technique is to materialize
some or all of these cells rather than compute them from raw data each time� Commercial
systems di�er mainly in their approach to materializing the data cube� In this paper� we in�
vestigate the issue of which cells �views� to materialize when it is too expensive to materialize
all views� A lattice framework is used to express dependencies among views� We then present
greedy algorithms that work o� this lattice and determine a good set of views to materialize�
The greedy algorithm performs within a small constant factor of optimal under a variety of
models� We then consider the most common case of the hypercube lattice and examine the
choice of materialized views for hypercubes in detail� giving some good tradeo�s between the
space used and the average time to answer a query�

� Introduction

Decision support systems �DSS� are rapidly becoming a key to gaining competitive advantage for
businesses� DSS allow businesses to get at data that is locked away in operational databases and
turn that data into useful information� Many corporations have built or are building new uni�ed
decision�support databases called data warehouses on which users can carry out their analysis�

While operational databases maintain state information� data warehouses typically maintain
historical information� As a result� data warehouses tend to be very large and to grow over time�
Users of DSS are typically interested in identifying trends rather than looking at individual records
in isolation� Decision�support queries thus make heavy use of aggregations and are much more
complex than OLTP queries�

The size of the data warehouse and the complexity of queries can cause queries to take very
long to complete� This delay is unacceptable in most DSS environments� as it severely limits
productivity� The usual requirement is query execution times of a few seconds or a few minutes at
the most�

There are many ways to achieve such performance goals� Query optimizers and query evaluation
techniques can be enhanced to handle aggregations better �CS�	
� �GHQ��
� �YL��
� to use di�erent
indexing strategies like bit�mapped indexes and join indexes �OG��
� and so on�

�Work was supported by NSF grant IRI���������� by ARO grant DAAH������	��	��� and by Air Force Contract
F��
	�����	�	��� Authors� address� Department of Computer Science� Stanford University� Stanford� CA �����

�	��� Email� fvenky� anand� ullmang�db�stanford�edu�






A commonly used technique is to materialize �precompute� frequently�asked queries� The data
warehouse at the Mervyn�s department�store chain� for instance� has a total of �	�� precomputed
tables �Rad��
 to improve query performance� Picking the right set of queries to materialize is a
nontrivial task� since by materializing a query we may be able to answer other queries quickly� For
example� we may want to materialize a query that is relatively infrequently asked if it helps us
answer many other queries quickly� In this paper� we present a framework and algorithms that
enable us to pick a good set of queries to materialize� Our framework also lets us infer in what
order these queries are to be materialized�

��� The Data Cube

Users of data warehouses work in a graphical environment and data are usually presented to them
as a multidimensional �data cube� whose ��D� ��D� or even higher�dimensional sub cubes they
explore trying to discover interesting information� The values in each cell of this data cube are
some �measures� of interest� As an example consider the TPC�D decision�support benchmark�

EXAMPLE ��� The TPC�D benchmark models a business warehouse� Parts are bought from
suppliers and then sold to customers at a sale price SP� The database has information about each
such transaction over a period of � years�

There are three dimensions we are interested in� part� supplier� and customer� The �mea�
sure� of interest is the total sales� So for each cell �p� s� c� in this ��D data cube� we store
the total sales of part p that was bought from supplier s� and sold to customer c� We use
the terms dimension and attribute interchangeably in this section� In the general case� a given
dimension may have many attributes as we shall see in Section ��

Users are also interested in consolidated sales� for example� what is the total sales of a given
part p to a given customer c� �GBLP��
 suggest adding an additional value �ALL� to the domain
of each dimension to achieve this� In the question above we want the total sales of a given part p
to a given customer c for �ALL� suppliers� The query is answered by looking up the value in cell
�p� ALL� c��

�

We use the TPC�D database of size 
GB as a running example throughout this paper� For
more details on this benchmark refer to �TPCD
�

We have only discussed the presentation of the data set as a multi�dimensional data cube to
the user� The following implementation alternatives are possible�


� Physically materialize the whole data cube� This approach gives the best query response
time� However� precomputing and storing every cell is not a feasible alternative for large data
cubes� as the space consumed becomes excessive� It should be noted that the space consumed
by the data cube is also a good indicator of the time it takes to create the data cube� which
is important in many applications� The space consumed also impacts indexing and so adds
to the overall cost�

�� Materialize nothing� In this case we need to go to the raw data and compute every cell on
request� This approach punts the problem of quick query response to the database system
where the raw data is stored� No extra space beyond that for the raw data is required�

�� Materialize only part of the data cube� We consider this approach in this paper� In a data
cube� the values of many cells are computable from those of other cells in the data cube�
This dependency is similar to a spreadsheet where the value of cells can be expressed as a

�



function of the values of other cells� We call such cells �dependent� cells� For instance� in
Example 
�
� we can compute the value of cell �p� ALL� c� as the sum of the values of cells of
�p� s�� c�� � � � � �p� sNsupplier� c�� where Nsupplier is the number of suppliers� The more cells

we materialize� the better query performance is� For large data cubes however� we may be
able to materialize only a small fraction of the cells of the data cube� due to space and other
constraints� It is thus important that we pick the right cells to materialize� Our approach is
very scalable and can handle large data cubes well�

Any cell that has an �ALL� value as one of the components of its address is a dependent
cell� The value of this cell is computable from those of other cells in the data cube� If a cell has
no �ALL�s in its components� its value cannot be computed from those of other cells� and we
must query the raw data to compute its value� The number of cells with �ALL� as one of their
components is usually a large fraction of the total number of cells in the data cube� In the TPC�D
database with the dimensions as in Example 
�
� seventy percent of all the cells in the data cube
are dependent�

The problem of what cells of the data cube to materialize� is a very real one� There are di�erent
commercial systems which pick one of the di�erent strategies given above� Clearly� each strategy
has its bene�ts� For example� for applications where performance is of paramount importance and
scalability is not important we can go with the materialize�everything strategy� The Essbase sys�
tem �ESS
� for example� materializes the whole data cube� while BusinessObjects �X�	
 materializes
nothing� and the MetaCube system �STG
 materializes part of the cube�

There is also the issue of where the materialized data cube is stored� in a relational system
or a proprietary MDDB �multi�dimensional database� system� In this paper� we assume that the
data cube is stored in �summary� tables in a relational system� Sets of cells of the data cube are
assigned to di�erent tables�

The cells of the data cube are organized into di�erent sets based on the positions of �ALL� in
their addresses� Thus� for example� all cells whose addresses match the address � �ALL� � are placed
in the same set� Here� � � is a placeholder that matches any value� Each of these sets corresponds
to a di�erent SQL query� The values in the set of cells � �ALL� � is output by the SQL query�

SELECT Part� Customer� SUM�SP� AS TotalSales

FROM R

GROUP BY Part� Customer�

Here� R refers to the raw�data relation� The queries corresponding to the di�erent sets of cells�
di�er only in the GROUP�BY clause� In general� attributes with �ALL� values in the description
of the set of cells� do not appear in the GROUP�BY clause of the SQL query above� For example�
supplier has an �ALL� value in the set description � �ALL� �� Hence it does not appear in the
GROUP�BY clause of the SQL query� Since the SQL queries of the various sets of cells di�er only in
the grouping attributes� we use the grouping attributes to identify queries uniquely�

Deciding which sets of cells to materialize is equivalent to deciding which of the corresponding
SQL queries �views� to materialize� In the rest of this paper we thus work with views rather than
with sets of cells�

��� Motivating Example

The TPC�D database we considered in Example 
�
 has � attributes� part� supplier� customer�
We thus have � possible groupings of the attributes� We list all the queries �views� possible below

�



with the number of rows in their result� Note again it su�ces to only mention the attributes in the
GROUP�BY clause of the view�


� part� supplier� customer ��M� i�e�� � million rows�

�� part� customer ��M�

�� part� supplier ����M�

	� supplier� customer ��M�

�� part ����M�

�� supplier ����
M�

�� customer ���
M�

�� none �
�

none indicates that there are are no attributes in the GROUP�BY clause� Figure 
 shows these eight
views organized as a lattice of the type we shall discuss in Section �� In naming the views in this
diagram� we use the abbreviation p for part� s for supplier� and c for customer�

psc �M

pc �M ps ���M sc �M

p ���M s ���
M c ��
M

none 


Figure 
� The eight views constructible by grouping on some of part� supplier� and customer

One possible user query is a request for an entire view� For example� the user may ask for the
sales grouped by part� If we have materialized the view that groups only by part �view ��� we
only need scan the view and output the answer� We can also answer this query using the view
that groups by part and customer �view ��� In this case� since we have the total sales for each
customer� for each part we need to sum the sales across all customers to get the result�

In this paper we assume the cost of answering a query is proportional to the number of rows
examined� Thus� the cost of �nding the total sales grouped by part� if �view �� is materialized� is
the cost of processing ��� million rows �the size of this view�� To answer the same query using the
part� customer view we would need to process � million rows�

Another kind of user query would ask only for the sales for a single part� say �widgets�� If the
views have no indexes� then we still have to scan the entire view �or half on the average� to answer
this question� Thus� the same comparison� ���M rows for view � versus �M rows for view �� would
apply to this query� If� however� the appropriate indexes are available in both views� �nding sales
of widgets requires only one row access from view �� while in view � we would have to access an

	



average of �M����M � �� rows�� However� regardless of whether or not the materialized views are
indexed� we expect that the cost of answering each of these queries � whole view or a single cell �
would be proportional to the size of the view from which we answered the query� We shall discuss
the cost model in more detail in Section ��

There are some interesting questions we can now ask�


� How many views must we materialize to get reasonable performance�

�� Given that we have space S� what views do we materialize so that we minimize average query
cost�

�� If we�re willing to tolerate an X� degradation in average query cost from a fully materialized
data cube� how much space can we save over the fully materialized data cube�

In this paper� we provide algorithms that help us answer the above questions and provide near
optimal results�

In the above example� a fully materialized data cube would have all the views materialized and
thus have slightly more than 
� million rows�

Now let us see if we can do better� To avoid going to the raw data� we need to materialize the
view grouping by part� supplier� and customer �view 
�� since that view cannot be constructed
from any of the other views� Now consider the view grouping by part and customer �view ���
Answering any query using this view will require us to process � million rows� The same query
can always be answered using the view grouping by part� supplier� and customer� which again
requires processing of � million rows� Thus there is no advantage to materializing the view grouping
by part and customer� By similar reasoning� there is no advantage materializing the view grouping
by supplier and customer �view 	�� Thus we can get almost the same average query cost using
only � million rows� an improvement of more than ��� in terms of space consumed and thus in the
cost of creating the data cube�

Thus by cleverly choosing what parts of the data cube to materialize� we can reap dramatic
bene�ts�

��� Related Work

Multi�dimensional data processing �also known as OLAP� has enjoyed spectacular growth of late�
There are two basic implementation approaches that facilitate OLAP� The �rst approach is to
eschew SQL and relational databases and to use proprietary multi�dimensional database �MDDB�
systems and APIs for OLAP� So while the raw data is in relational data warehouses� the data cube is
materialized in an MDDB� Users query the data cube� and the MDDB e�ciently retrieves the value
of a cell given its address� To allocate only space for those cells present in the raw data and not
every possible cell of the data cube� a cell�address hashing scheme is used� Arbor�s Essbase �ESS

and many other MDDBs are implemented this way� Note� this approach still materializes all the
cells of the data cube present in raw data� which can be very large�

The other approach is to use relational database systems and let users directly query the raw
data� The issue of query performance is attacked using smart indexes and other conventional
relational query optimization strategies� There are many products like BusinessObjects and Mi�
crostrategy�s DSS Agent that take this tack� However� MDDBs retain a signi�cant performance
advantage� Performance in relational database systems though can be improved dramatically by
materializing the data cube into summary tables�

�Here we disregard the number of index nodes accessed�

�



The relational approach is very scalable and can handle very large data warehouses� MDDBs
on the other hand have much better query performance� but are not very scalable� By materializing
only selected parts of the data cube� we can improve performance in the relational database� and
improve scalability in MDDBs� There are products in both the relational world �STG
� and the
MDDB world �Sinper�s Spreadsheet Connector� that materialize only parts of the data cube� We
believe however that this paper is the �rst to investigate this fundamental problem in such detail�

�GBLP��
 discusses generalizing the SQL GROUP�BY operator to a data cube operator� They
introduce the notion of �ALL� that we mention� However� they also claim the size of the entire
data cube is not much larger than the size of the corresponding GROUP�BY� We believe di�erently��

As we saw in the TPC�D database� the data cube is usually much larger� more than three times
larger than the corresponding GROUP�BY �part� supplier� customer��

��� Paper Organization

The paper is organized as follows� In Section � we introduce the lattice framework to model
dependency among views� We also show how the lattice framework models more complex groupings
that involve arbitrary hierarchies of attributes� Then in Section �� we present the query�cost model
that we use in this paper� Section 	 presents a general technique for producing near�optimal
selections of materialized views for problems based on arbitrary lattices� In Section �� we consider
the important special case of a �hypercube� lattice� where the views are each associated with a set
of attributes on which grouping occurs� The running example of Section 
�� is such a hypercube�

� The Lattice Framework

In this section we develop the notation for describing when one data�cube query can be answered
using the results of another� As an example� in Section 
�� we saw that for the data�cube� queries
that we might wish to materialize are completely speci�ed by giving the attributes in their GROUP�BY
clause� We may thus denote a view or a query �which are the same thing� by giving its grouping
attributes inside parenthesis� For example the query with grouping attributes part and customer

is denoted by �part� customer�� We also saw that views de�ned by supersets can be used to answer
queries involving subsets�

��� The Dependence Relation on Queries

We may generalize the observations of Section 
�� as follows� Consider two queries Q� and Q��
We say Q
 � Q� if and only if Q
 can be answered using only the results of query Q�� We then
say that Q� is dependent on Q�� For example� in Section 
��� the query �part�� can be answered
using only the results of the query �part� customer�� Thus �part� � �part� customer�� There
are certain queries that are not comparable with each other using the � operator� For example�
�part� �� �customer� and �customer� �� �part��

The � operator imposes a partial ordering on the queries� We shall talk about the views of a
data�cube problem as forming a lattice �TM��
� In order to be a lattice� any two elements �views
or queries� must have a least upper bound and a greatest lower bound according to the � ordering�
However� in practice� we only need the assumptions that

�The analysis in �GBLP���� assumes that every possible cell of the data cube exists� However� in most cases� data
cubes are sparse� only a small fraction of all possible cells are present� In such cases� the size of the data cube can
be much larger than the corresponding GROUP�BY� In fact� the sparser the data cube� the larger is the ratio of the size
of the data cube to the size of the corresponding GROUP�BY�

�




� � is a partial order� and

�� There is a top element� a view upon which every view is dependent�

��� Lattice Notation

We denote a lattice with set of elements �queries or views in this paper� L and dependence relation
� by hL��i� For elements a and b of a lattice hL��i� a � b means that a � b and a �� b�

The ancestors and descendants of an element of a lattice hL��i� are de�ned as follows�

ancestor�a� � fb j a � bg

descendant�a� � fb j b � ag

Note that every element of the lattice is its own descendant and its own ancestor� The immediate
proper ancestors of a given element a in the lattice belong to a set we shall call next�a�� Formally�

next�a� � fb j a � b� � �c� a � c� c � bg

��� Lattice Diagrams

It is common to represent a lattice by a lattice diagram� a graph in which the lattice elements are
nodes and there is an edge from a below to b above if and only if b is in next�a�� Thus� for any two
lattice elements x and y� the lattice diagram has a path downward from y to x if and only if x � y�

EXAMPLE ��� The hypercube of Fig� 
 is the lattice diagram of the set of views discussed in
Section 
��� �

��� Hierarchies

In most real�life applications� dimensions of a data cube consist of more than one attribute� and
the dimensions are organized as hierarchies of these attributes� A simple example is organizing
the time dimension into the hierarchy� day� month� and year� Hierarchies are very important� as
they form a basis of two very commonly used querying operations� �drill�down� and �roll�up��
Drill�down is the process of viewing data at progressively more detailed levels� For example� a user
drills down by �rst looking at the total sales per year and then total sales per month and �nally�
sales on a given day� Roll�up is just the opposite� it is the process of viewing data in progressively
less detail� In roll�up� a user starts with total sales on a given day� then looks at the total sales in
that month and �nally the total sales in that year�

In the presence of hierarchies� the dependency lattice hL��i is more complex than a hypercube
lattice� For example� consider a query that groups on the time dimension and no other� When we
use the time hierarchy given earlier� we have the following three queries possible� �day�� �month��
�year�� each of which groups at a di�erent granularity of the time dimension� Further�

�year� � �month� � �day��

In other words� if we have total sales grouped by month� for example� we can use the results to
compute the total sales grouped by year� Hierarchies introduce query dependencies that we must
account for when determining what queries to materialize�

To make things more complex� hierarchies often are not total orders but partial orders on
the attributes that make up a dimension� Consider the time dimension with the hierarchy day�

�



week� month� and year� Since months and years cannot be divided evenly into weeks� if we do
the grouping by week we cannot determine the grouping by month or year� In other words�
�month� �� �week�� �week� �� �month�� and similarly for week and year� When we include the none

view corresponding to no time grouping at all� we get the lattice for the time dimension shown in
the diagram of Fig� ��

Week Month

Day

Year

none

Figure �� Hierarchy of time attributes

��� Composite Lattices for Multiple� Hierarchical Dimensions

We are faced with query dependencies of two types�


� Query dependencies caused by the interaction of the di�erent dimensions with one another�
The example in Section 
�� and the corresponding lattice in Fig� 
 is an example of this sort
of dependency�

�� Query dependencies within a dimension caused by attribute hierarchies�

If we are allowed to create views that independently group by any or no member of the hierarchy
for each of n dimensions� then we can represent each view by an n�tuple �a�� a�� � � � � an�� where each
ai is a point in the hierarchy for the ith dimension� This lattice is called the direct product of the
dimensional lattices �TM��
� We directly get a � operator for these views by the rule

�a�� a�� � � � � an� � �b�� b�� � � � � bn� if and only if ai � bi for all i

We illustrate the building of this direct�product lattice in the presence of hierarchies using an
example based on the TPC�D benchmark�

EXAMPLE ��� In Example 
�
� we mentioned the TPC�D benchmark database� In this example
we focus further on two dimensions� part and customer� Each of these dimensions is organized into
hierarchies� The dimensional lattices for the dimension queries are given in Fig� �� These dimension
lattices have already been modi�ed to include the attribute �none� as the lowest element�

The customer dimension is organized into the following hierarchy� individual customers� de�
noted by attribute c� are grouped together based on their country of residence� denoted by attribute
n� The coarsest level of grouping is none at all� and this grouping is denoted by the attribute none�

For the part dimension� the individual parts are denoted by attribute p� These individual parts
are grouped together based on their size denoted by attribute s� They are also grouped together
based on their types� denoted by attribute t� Note neither of s and t is � the other� Finally� we
have the attribute none as the smallest element in this lattice� The direct�product lattice is shown
in Fig� 	� Note� when a dimension�s value is none in a query� we do not specify the dimension in
the query� Thus for example� �s�none� is written as �s�� �

�



c

n

p

t

nonenone

s

�a� Customer �b� Part

Figure �� Hierarchies for the customer and part dimensions

cp

ct

c
np

nt

n
p

t

none

cs

ns

s

�M

����M�M

�M

����

���M


���


��

��

��
M

��




Figure 	� Combining two hierarchical dimensions

The lattice framework� we present and advocate in this paper� is advantageous for several
reasons�


� It provides a clean framework to reason with dimensional hierarchies� since hierarchies are
themselves lattices� As can be seen in Fig� 	� the direct�product lattice is not always a hyper�
cube when hierarchies are not simple� Current data cube approaches are unable to integrate
dependencies caused by dimensional hierarchies cleanly with the dependencies caused by in�
ter dimensional interaction� as we do� As we shall see shortly in Section 	� doing so is very
important in deciding which views need to be materialized for best query performance�

�� We can model the common queries asked by users better using a lattice framework� Users
usually don�t jump between unconnected elements in this lattice� they move along the edges

�



of the lattice� In fact� drill�down is going up �going from a lower to higher level� a path in
this lattice� while roll�up is going down a path�

�� The lattice approach also tells us in what order to materialize the views� Thus for example�
let us decide to materialize views S � fQ�� � � � � QNg� Since some queries in set S may be
dependent on others� we need not go to the raw data to materialize every view� By using
views that are already materialized to materialize other views in S� we can reduce the total
materialization time dramatically� Doing so translates to reducing the time required to create
the data cube� Consider the lattice� hS��i� in which all the views in S are elements� Perform
a topological sort of S based on the � operator� Arrange the elements of S in descending
order with respect to operator �� Let the order be Qs

�� � � � � Q
s
N � We materialize the views in

this order� The �rst few views have no proper�ancestor elements in S� To materialize these
views we must access raw data� Thereafter� all the views can be materialized from views
materialized earlier� In materializing a view Qs

i � we use its proper�ancestor in S� Qs
j � j � i�

with the smallest number of rows�

� The Cost Model

In this section� we review and justify our assumptions about the �linear cost model�� in which the
time to answer a query is taken to be equal to the space occupied by the view from which the query
is answered� We then consider some points about estimating sizes of views without materializing
them and give some experimental validation of the linear cost model�

��� The Linear Cost Model

Let hL��i be a lattice of queries �views�� To answer a query Q we choose an ancestor of Q� say
QA� that has been materialized� We thus need to process the table corresponding to QA to answer
Q� The cost of answering Q is a function of the size of the table for QA� In this paper� we choose
the simplest cost�model�

� The cost of answering Q is the number of rows present in the table for that query QA used
to construct Q�

As we discussed in Section 
��� not all queries ask for an entire view� such as a request for the
sales of all parts� It is at least as likely that the user would like to see sales for a particular part
or a few parts� If we have the appropriate index structure� and the view �part� is materialized�
then we can get our answer in O�
� time� If there is not an appropriate index structure� then we
would have to search the entire �part� view� and the query for a single part takes almost as long
as producing the entire view�

If� for example� we need to answer a query about a single part from some ancestor view such
as �part� supplier� we need to examine the entire view� It can be seen that a single scan of the
view is su�cient to get the total sales of a particular part� Now on the other hand if we wish
to �nd the total sales for each part from the ancestor view �part� supplier�� we need to do an
aggregation over this view� We can use either hashing or sorting �with early aggregation� �G��

to do this aggregation� The cost of doing the aggregation is a function of the amount of memory
available and the ratio of the number of rows in the input to that in the output� In the best case�
a single pass of the input is su�cient �for example� when the hash table �ts in main memory�� In
practice� it has been observed that most aggregations take between one and two passes of the input
data�


�



While the actual cost of queries that ask for single cells� or small numbers of cells� rather than
a complete view� is thus complex� we feel it is appropriate to make an assumption of uniformity�
That is� either the data structure used to store views supports e�cient access to the desired cell�
in which case the time required is proportional to the number of rows that must be aggregated
to compute the value in the cell� or the data structure does not� in which case the behavior of
single�cell and full�view queries are essentially the same�

In the �rst case� where a suitable data structure exists� we shall make the further assumption
that� over time� many queries asking for �di�erent� cells of the same view Q will occur� Some
number of these queries� as a group� will have performance equivalent to that of a single query for
the full view Q� That is� either their total time will equal that of reading Q� if it is materialized� or
the time will be that of reading view QA� the preferred� materialized ancestor of Q� Thus� we may
avoid the question of whether full�view or single�cell queries predominate� and treat all queries as
full�view queries� Thus�

� We assume that all queries are identical to some element �view� in the given lattice�

Clearly there are other factors� not considered here� that in�uence query cost� Among them are
the clustering of the materialized views on some attribute� and the indexes that may be present�
More complicated cost models are certainly possible� but we believe the cost model we pick� being
both simple and realistic� enables us to design and analyze powerful algorithms� We believe that
our analysis of the algorithms we develop in Sections 	 and � re�ects their performance under other
cost models as well as under the model we use here�

��� Experimental Examination of the Linear Cost Model

A substantial validation of our cost model is shown in Fig� �� On the TPC�D data� we asked for the
total sales for a single supplier� under four conditions� using views of di�erent granularities� We �nd
an almost linear relationship between size and running time of the query� This linear relationship
can be expressed by the formula�

T � m � S � c

Here T is the running time of the query on a view of size S� c gives the �xed cost� the overhead
of running this query on a view of negligible size� In this case� the �rst row of the table in Fig� ��
gives the �xed cost of ���� seconds� m is the ratio of the query time to the size of the view� after
accounting for the �xed cost� As can be seen in Fig� � this ratio is almost the same for the di�erent
views�

Source Size Time �sec�� Ratio

From cell itself 
 ���� not applicable
From view �supplier� 
����� ���� ������

From view �part� supplier� ������� ����� �������
From view �part� supplier� customer� ��������� ������ �������

Figure �� Growth of query response time with size of view







��� Determining View Sizes

Our algorithms require knowledge of the number of rows present in each view� There are many
ways of estimating the sizes of the views short of materializing all the views� One commonly used
approach is to run our algorithms on a statistically signi�cant but small subset of the raw data�
In such a case� we can get the sizes of the views by actually materializing the views� We use this
subset of raw data to determine which views we want to materialize� And we only materialize a
few views from the entire raw data�

We can use sampling and analytical methods to compute the sizes of the di�erent views if we
only materialize the largest element vl in the lattice �the view that groups by the largest attribute in
each dimension�� For a view� if we know that the grouping attributes are statistically independent�
we can estimate the size of the view analytically� given the size of vl� Otherwise we can sample vl
�or the raw data� to estimate the size of the other views� The size of a given view is the number of
distinct values of the attributes it groups by� Thus for example� the size of the view that groups by
part and supplier is the number of distinct values of part and supplier in the raw data� There
are many well�known sampling techniques that we can use to determine the number of distinct
values of attributes in a relation �HNSS��
�

� Optimization of Data�Cube Lattices

Our most important objective is to develop techniques for optimizing the space�time tradeo� when
implementing a lattice of views� The problem can be approached from many angles� since we may
in one situation favor time� in another space� and in a third be willing to trade time for space as
long as we get good �value� for what we trade away� In this section� we shall begin with a simple
optimization problem� in which


� We wish to minimize the average time taken to evaluate a view�

�� We are constrained to materialize a �xed number of views� regardless of the space they use�

Evidently item ��� does not minimize space� but in Section 	�� we shall show how to adapt our
techniques to a model that does optimize space utilization�

Even in this simple setting� the optimization problem is NP�complete there is a straightforward
reduction from Set�Cover� Thus� we are motivated to look at heuristics to produce approximate
solutions� The obvious choice of heuristic is a �greedy� algorithm� where we select a sequence of
views� each of which is the best choice given what has gone before� We shall see that this approach
is always fairly close to optimal and in some cases can be shown to produce the best possible
selection of views to materialize�

��� The Greedy Algorithm

Suppose we are given a data�cube lattice with space costs associated with each view� In this paper�
the space cost is the number of rows in the view� Let C�v� be the cost of view v� Suppose also that
there is a limit k on the number of views� in addition to the top view� that we may select� After
selecting some set S of views �which surely includes the top view�� the bene�t of view v relative to
S� which we denote B�v� S�� is de�ned as follows�


� For each w � v� de�ne the quantity Bw by�


�



�a� Let u be the view of least cost in S such that w � u� Note that since the top view is in
S� there must be at least one such view in S�

�b� If C�v� � C�u�� then Bw � C�v�� C�u�� Otherwise� Bw � ��

�� De�ne B�v� S� �
P

w�v Bw �

In perhaps simpler terms� we compute the bene�t of v by considering how it can improve the
cost of evaluating views� including itself� For each view w that v covers� we compare the cost of
evaluating w using v and using whatever view from S o�ered the cheapest way of evaluating w� If
v helps� i�e�� the cost of v is less than the cost of its competitor� then the di�erence represents part
of the bene�t of selecting v as a materialized view� The total bene�t B�v� s� is the sum over all
views w of the bene�t of using v to evaluate w� providing that bene�t is positive�

Now� we can de�ne the Greedy Algorithm for selecting a set of k views to materialize� The
algorithm is shown in Fig� ��

S � �top view��

for i�	 to k do begin

select that view v not in S such that B�v�S� is maximized�

S � S union �v��

end�

resulting S is the greedy selection�

Figure �� The Greedy Algorithm

EXAMPLE ��� Consider the lattice of Fig� �� Eight views� named a through h have space costs
as indicated on the �gure� The top view a� with cost 
��� must be chosen� Suppose we wish to
choose three more views�

a

b c

d e f

g h

��

��
��


�


	�

��


��

Figure �� Example lattice with space costs

To execute the greedy algorithm on this lattice� we must make three successive choices of view
to materialize� The column headed �First Choice� in Fig� � gives us the bene�t of each of the views


�



besides a� When calculating the bene�t� we begin with the assumption that each view is evaluated
using a� and will therefore have a cost of 
���

If we pick view b to materialize �rst� then we reduce by �� its cost and that of each of the views
d� e� g� and h below it� The bene�t is thus �� times �� or ���� as indicated in the row b and �rst
column of Fig� �� As another example� if we pick e �rst then it and the views below it � g and
h � each have their costs reduced by ��� from 
�� to ��� Thus� the bene�t of e is �
��

First Choice Second Choice Third Choice

b ��� � � ���
c ��� � � 
�� ��� � � �� ��� 
 � ��
d ��� � � 
�� ��� � � �� ��� � � ��
e ��� � � �
� ��� � � �� �� � �� � 
� � ��
f ��� � � 
�� �� � 
� � ��
g ��� 
 � �� 	�� 
 � 	� 	�� 
 � 	�
h ��� 
 � �� 	�� 
 � 	� ��� 
 � ��

Figure �� Bene�ts of possible choices at each round

Evidently� the winner in the �rst round is b� so we pick that view as one of the materialized
views� Now� we must recalculate the bene�t of each view V � given that the view will be created
either from b� at a cost of ��� if b is above V � or from a at a cost of 
��� if not� The bene�ts are
shown in the second column of Fig� ��

For example� the bene�t of c is now ��� �� each for itself and f � Choosing c no longer improves
the cost of e� g� or h� so we do not count an improvement of �� for those views� As another example�
choosing f yields a bene�t of �� for itself� from 
�� to 	�� For h� it yields a bene�t of 
�� from ��
to 	�� since the choice of b already improved the cost associated with h to ��� The winner of the
second round is thus f � with a bene�t of ��� Notice that f wasn�t even close to the best choice at
the �rst round�

Our third choice is summarized in the last column of Fig� �� As an example of the most complex
calculation� the bene�t of e is ��� That number consists of �� for each of e and g� which would
reduce their costs of �� �using d� to �� �using e�� plus 
� for the reduction of the cost of h from 	�
�using f� to �� �using e�� The winner of the third round is d� with a bene�t of ��� gained from the
improvement to its own cost and that of g�

The greedy selection is thus b� d� and f � These� together with a� reduces the total cost of
evaluating all the views from ���� which would be the case if only a was materialized� to 	��� That
cost is actually optimal�

�

EXAMPLE ��� Let us now examine the lattice suggested by Fig� �� This lattice is� as we shall
see� essentially as bad as a lattice can be for the case k � �� The greedy algorithm� starting with
only the top view a� �rst picks c� whose bene�t is 	
	
� That is� c and the 	� views below it are
each improved from ��� to ��� when we use c in place of a�

For our second choice� we can pick either b or d� They both have a bene�t of �
��� Speci�cally�
consider b� It improves itself and the �� nodes at the far left by 
�� each� Thus� with k � �� the
greedy algorithm produces a solution with a bene�t of ��	
�

However� the optimal choice is to pick b and d� Together� these two views improve by 
�� each�
themselves and the �� views of the four chains� Thus� the optimal solution has a bene�t of �����


	



��
nodes
total

���

��
nodes
total

���

��
nodes
total

���

��
nodes
total

���

a

b c d

���

��


��
��

Figure �� A lattice where the greedy algorithm does poorly

the ratio of greedy�optimal is ��	
������ which is about ��	� In fact� by making the cost of c
closer to 
��� and by making the four chains have arbitrarily large numbers of views� we can �nd
examples for k � � with ratio arbitrarily close to ��	� but no worse� �

��� An Experiment With the Greedy Algorithm

We ran the greedy algorithm on the lattice of Fig� 	� using the TPC�D database described earlier�
Figure 
� shows the resulting order of views� from the �rst �top view� which is mandatory� to the
twelfth and last view� The units of Bene�t� Total Time and Total Space are number of rows� Note�
the average query time is the total time divided by the number of views �
� in this case��

Number Selection Bene�t Total Time Total Space


� cp in�nite ��M �M
�� ns �	M 	�M �M
�� nt 
�M ��M �M
	� c ���M ���
M ��
M
�� p ���M �	��M ���M
�� cs 
M ����M 

��M
�� np 
M ����M 
���M
�� ct ���
M ����M ����M
�� t small ����M ����M

� n small ����M ����M


� s small ����M ����M

�� none small ����M ����M

Figure 
�� Greedy order of view selection for TPC�D�based example

This example shows why it is important to materialize some views and also why materializing
all views is not a good choice� The graph in Fig� 

 has the total time taken and the space consumed
on the Y�axis� and the number of views picked on the X�axis� It is clear that for the �rst few views


�




 � � 	 � � � � � 
� 

 
�

��M

	�M

��M

��M

Total Time

Total Space

Number of Materialized Views

Figure 

� Time and Space for the greedy view selection for the TPC�D�based example�

we pick� with minimal addition of space� the query time is reduced substantially� After we have
picked � views however� we cannot improve total query time substantially even by using up large
amounts of space� For this example� there is a clear choice of when to stop picking views� If we
pick the �rst �ve views � cp� ns� nt� c� and p � �i�e�� k � 	� since the top view is included in the
table�� then we get almost the minimum possible total time� while the total space used is hardly
more than the mandatory space used for just the top view�

��� A Performance Guarantee for the Greedy Algorithm

We can show that no matter what lattice we are given� the greedy algorithm never performs too
badly� Speci�cally� the bene�t of the greedy algorithm is at least ��� of the bene�t of the optimal
algorithm� The precise fraction is �e� 
��e� where e is the base of the natural logarithms�

To begin our explanation� we need to develop some notation� Let v�� v�� � � � � vk be the k views
selected in order by the greedy algorithm� Let ai be the bene�t achieved by the selection of vi� for
i � 
� �� � � � � k� That is� ai is the bene�t of vi� with respect to the set consisting of the top view and
v�� v�� � � � � vi���

Let w�� w�� � � � � wk be the optimal set of k views� i�e�� those that give the maximum total bene�t�
The order in which these views appear is arbitrary� but we need to pick an order� Given the w�s in


�



order w�� w�� � � � � wk� de�ne bi to be the bene�t of wi with respect to the set consisting of the top
view plus w�� w�� � � � � wi��� De�ne A �

Pk
i�� ai and B �

Pk
i�� bi�

Now we must put an upper bound on the b�s in terms of the a�s� In the greedy solution� we
can look at any view and see how much that view�s cost has improved� We can also attribute its
improvement to various of the vi�s�

EXAMPLE ��� In Example 	�
� the cost associated with g improved from 
�� to ��� Of that
improvement� �� is attributed to the selection of b for the greedy solution and �� to the subsequent
selection of d� �

Next� we want to compare the improvement to an arbitrary view u e�ected by the v�s and by
the w�s� Figure 
� suggests how the improvement in the cost of some u might be partitioned among
the v�s �top bar� and w�s �lower bar�� We have suggested that the improvement in u is due to v��
v�� and v�� in the amounts suggested� Likewise� the larger improvement in u due to the w�s is
divided among w�� w�� w�� and w�� as shown�

In Greedy

In Optimal

v� v� v�

w� w� w� w�

Figure 
�� The improvement to any view u can be attributed to v�s or w�s

To show the upper bound on B�A we need to attribute each piece of the bene�ts bi either to
none of the v�s or to one particular vj � To do so� we examine the improvements to each view u as
suggested in Fig� 
��

EXAMPLE ��� We can attribute the contribution of w� wholly to v�� because the region for w�

is contained within the region for v�� The contribution of w� is divided among v�� v�� and v�� in
the proportions shown� The contribution of w� is not attributed to any of the v�s� while part of
w��s contribution is attributed to v� and part is not attributed� �

In general� order the improvements in the same sequence that the views are chosen� De�ne
xij to be the sum over all views u in the lattice of the amount of the bene�t bi �from wi� that is
attributed to vj � An important inequality that holds for each j is

�
Pk

i�� xij 	 aj

That is� the sum of the pieces of the bene�t of vj that is attributed to the various w�s cannot exceed
the bene�t of vj �

We can observe several inequalities from the fact that none of the w�s was picked in place of
one of the v�s �except in the case where wi � vi�� Our �rst observation�

� For all i� bi 	 a��

For if not� then wi would have been picked �rst by the greedy algorithm instead of v�� Similarly�
considering the second choice by the greedy algorithm tells us�


�



� For all i� bi � xi� 	 a��

The reason is that the bene�t wi brings to the competition for second choice is bi minus the amount
of bene�t of wi that was covered by v� the latter is xi�� The bene�t a� must be at least as great
as any competing choice� Generalizing the above� for each j we can write�

� For all i� bi � xi� � xi� � 
 
 
 � xi�j�� 	 aj �

If we sum each of the above equations over i and remember that


�
Pk

i�� bi � B

��
Pk

i�� ai � A

��
Pk

i�� xij 	 aj

we get the family of inequalities in Fig� 
��

�
� B 	 ka�
��� B 	 ka� � a�
��� B 	 ka� � a� � a�


 
 

�k� B 	 kak � a� � a� � 
 
 
� ak��

Figure 
�� Inequalities bounding the bene�t of the optimal solution

We thus conclude that B is no greater than the minimum of the right sides of the inequalities
of Fig� 
�� It is easy to show that if for a given a�� a�� � � � � ak the right sides are unequal� then we
can transfer some quantity from some aj to aj�� or aj��� resulting in no change to A but a looser
bound on B� Our conclusion is that

� For a �xed A� the tightest bound on B occurs when all the right sides in Fig� 
� are equal�

Notice� however� that the di�erence between the ith right side and the �i � 
�st right side is
kai��� �k� 
�ai� Since this di�erence must be �� we conclude that ai � k

k��ai��� For these values
of the a�s� we observe�

� A �
Pk��

i�	 � k
k���iak � because the terms of the sum are a�� a�� � � � � ak�

� B 	 k� k
k���k��ak� This bound comes most easily from the �rst inequality of Fig� 
�� but it

could come from any of the inequalities� since they have equal right sides�

Our conclusion� taken from the ratio of the above formulas� is�

A�B �
Pk��

i�	 � k
k���i�k��

� �
k �
 � k��

k � �k��k �� � 
 
 
� �k��k �k���

� 
� �k��k �k

For example� for k � � we get A�B � ��	 i�e�� the greedy algorithm is at least ��	 of optimal�


�



��� Matching the Worst Possible Ratio for the Greedy Algorithm

We saw in Example 	�� that for k � � there were speci�c lattices that approached ��	 as the ratio
of the bene�ts of the greedy and optimal algorithms� In fact�

� For any k� the ratio A�B � 
� �k��k �k can be reached�

We omit the detailed construction of the sequence of bad cases� one for each k� from this paper�
However� the intuitive idea is as follows� Construct a lattice with k identical subtrees� each of whose
roots gives the same� large bene�t B� These k nodes will be the optimal choice�

Now add to the lattice one node v� that includes among its descendants 
�kth of each of these
subtrees� plus something extra so v��s bene�t is just slightly higher than B� Thus� v� will be the �rst
greedy choice� Then� add to the lattice a node v� that covers 
�kth of that portion of each subtree
that was not covered by v�� plus something extra� so v��s bene�t is just higher than B�k � 
��k�
Note that after v� was picked� the bene�t of each of the subtree roots shrinks to B�k � 
��k� so v�
becomes the second greedy choice� Continue in this manner� with each of the greedy�choice nodes
covering 
�kth of that portion of the subtrees that was not covered by any of the previous greedy
choices� It is then possible to show that� while the optimal choice has bene�t kB� the bene�t of
the greedy choices is just �
� �k��k �k�B� We conclude that

� For all k� the lower bound on the ratio of the greedy and optimal bene�ts is exact� That is�
the ratio 
� �k��k �k� shown in Section 	�� actually occurs for at least one lattice for each k�

As k � 
� �k��k �k approaches 
�e� so A�B � 
 � �
e � �e � 
��e � ����� That is� for no

lattice whatsoever does the greedy algorithm give a bene�t less than ��� of the optimal bene�t�
Conversely� the sequence of bad examples suggested by Section 	�	 shows that this ratio cannot be
improved upon�

��� Cases Where Greedy is Optimal

The analysis of Section 	�� also lets us discover certain cases when the greedy approach is optimal�
or very close to optimal� Here are two situations where we never have to look further than the
greedy solution�


� If a� is much larger than the other a�s� then greedy is close to optimal� To see why� consider
the last inequality in Fig� 
�� It essentially says that B 	 a�� Since A is approximately a� in
this case� we have B 	 A �approximately��

�� If all the a�s are equal then greedy is optimal� In proof� consider the �rst inequality of
Fig� 
�� It says that B 	 ka�� but since all the a�s are equal� ka� � A� Similarly� if the a�s are
approximately equal� then B is approximately A� and the greedy approach is near�optimal�

��	 Extensions to the Basic Model

There are at least two ways in which our model fails to re�ect reality�


� The views in a lattice are unlikely to have the same probability of being requested in a query�
Rather� we might be able to associate some probability with each view� representing the
frequency with which it is queried�


�



�� Instead of asking for some �xed number of views to materialize� we might instead allocate a
�xed amount of space to views �other than the top view� which must always be materialized��

Point �
� requires little extra thought� When computing bene�ts� we weight each view by its
probability� The greedy algorithm will then have exactly the same bounds on its performance� at
least ��� of optimal�

Point ��� presents an additional problem� If we do not restrict the number of views selected�
but �x their total space� then we need to consider the bene�t of each view per unit space used by
a materialization of that view� The greedy algorithm again seems appropriate� but there is the
additional complication that we might have a very small view with a very high bene�t per unit
space� and a very large view with almost the same bene�t per unit space� Choosing the small view
excludes the large view� because there is not enough space available for the large view after we
choose the small�

On the other hand� if no view�s space is more than some fraction f of the total space allowed�
then the same analysis as given above says that the ratio of the bene�ts of the greedy and optimal
algorithms is no less than ����� f �

� The Hypercube Lattice

Arguably� the most important class of lattices are the hypercubes� in which the views are vertices
of an n�dimensional cube for some n� The intuition is that there are n attributes A�� A�� � � � � An

on which grouping may occur and an �n� 
�st attribute B whose value is aggregated in each view�
That is� each view is of the form

SELECT C	� C
�����Cp� SUM�B�

FROM R

GROUP BY C	� C
�����Cp�

where the C�s are some subset of the A�s� Figure 
 was an example of a hypercube lattice with
n � �� taken from the TPC�D benchmark database�

The top view groups on all n attributes� We can visualize the views organized by ranks� where
the ith rank from the bottom is all those views in which we group on i attributes� There are

�n
i

�

views in rank i�

��� The Equal
Domain
Size Case

We can� of course� apply the greedy algorithm to hypercube lattices� either looking for a �xed
number of views to materialize� or looking for a �xed amount of space to allocate to views� However�
because of the regularity of this lattice� we would like to examine in more detail some of the options
for selecting a set of views to materialize�

In our investigations� we shall �rst make an assumption that is unlikely to be true in practice�
all attributes A�� A�� � � � � An have the same domain size� which we shall denote r� The consequence
of this assumption is that we can easily estimate the size of any view� In Section ��	� we shall
consider what happens when the domain sizes vary� It will be seen that the actual views selected
to materialize will vary� but the basic techniques do not change to accommodate this more general
situation�

When each domain size is r� and data in the data cube is distributed randomly� then there is a
simple way to estimate the sizes of views� The combinatorics involved is complex� but the intuition

��



should be convincing� Suppose only m cells in the top element of our lattice appear in the raw
data� If we group on i attributes� then the number of cells in the resulting cube is ri� To a �rst
approximation� if ri � m� then each cell will contain at most one data point� and m of the cells will
be nonempty� We can thus use m as the size of any view for which ri � m� On the other hand� if
ri � m� then almost all ri cells will have at least one data point� Since we may collapse all the data
points in a cell into one aggregate value� the space cost of a view with ri � m will be approximately
ri� The view size as a function of the number of grouped attributes is shown in Fig� 
	�

n

logr m

Size of
View

m

Number of group�by
Attributes

Figure 
	� How the size of views grows with number of grouped attributes

The size of views grows exponentially� until it reaches the size of the raw data� and then ceases
to grow� Notice that the actual data taken from Fig� 
 almost matches this pattern� The top view
and the views with two grouping attributes have the same� maximum size� except that the view ps

�part� supplier� has somewhat fewer rows� due to the fact that the benchmark explicitly sets it
to have fewer rows�

��� The Space
Optimal Solution

One natural question to ask when investigating the time�space tradeo� for the hypercube is what
is the average time for a query when the space is minimal� Space is minimized when we materialize
only the top view� Then every query takes time m� and the total time cost for all �n queries is
m�n�

��� The Time
Optimal Solution

At the other extreme� we could minimize time by materializing every query� Then� the time to
execute each query would be equal to its own size� and the total space needed to store the data
cube would equal the time taken to execute each query once� However� under our model� the views
whose size is m� which will be all those queries that group by at least k � logrm attributes� will
have the maximum size m� and these may as well be executed through the top view�

De�ne the rank of a query or view to be the number of attributes on which it is grouped� Queries
organize themselves into ranks as suggested in Fig� 
�� There are two parameters of the problem
whose relationship determines what the time and space are for this case�

�




n

k

Figure 
�� The ranks of the hypercube lattice


� The rank k at which the �cli�� in Fig� 
	 occurs� That is� k � logr m� or rk � m�

�� The rank j such that rj
�n
j

�
is maximized� This quantity is the sum of the sizes of the queries

of rank j� provided that j is still in the growing portion of the curve in Fig� 
	� It is not hard
to show that at the maximum� r � j��n� j�� or j � nr��r � 
��

If k � j� then the bulk of the space and time are used for queries that have rank approximately
j� That is� to a �rst approximation� all �n queries use space rj � rnr�
r���� and the total space and
time are both ��rr�
r����n�

On the other hand� if k � j� then almost all the time and space is consumed executing queries
in the �at part of the curve of Fig� 
	� Thus� except for some materialized queries in ranks less
than k� whose total space is negligible� we can execute all the queries using the top view� Thus� the
space used is little more than m �recall that we do not have to materialize views in ranks between
k and n� 
��

Now� let us consider the time requirements� It is again possible to neglect the �small� queries
of rank below k� Each of the queries of rank k or more requires time m� so we have only to estimate
the total number of these queries� there are two subcases�


� k � j and k 	 n��� Here� at least half the views take m space and time� so the the time is
approximately m�n� Thus� in this case the time and space are both approximately that of
the space�optimal solution�

�� k � j and k � n��� Now� most of the space �and therefore time� is concentrated around rank
j� but there are relatively few of these views� The total time is approximated by

Pn
i�j

�n
i

�
ri�

Since the total time per rank decreases as i grows above j� we can approximate this sum by
its �rst term�

�n
j

�
rj �

Figure 
� summarizes the time and space used for the three tradeo� points studied�

��� Extension to Varying Domain Sizes

Suppose now that the domains of each attribute do not each have r equally�likely values� The next
simplest model is to assume that for each dimension� values are equally likely� but the number of
values varies� with ri values in the ith dimension for i � 
� �� � � � � n�

��



Strategy k� j� and n Space Time

Space�optimal m m�n

Time�optimal k � j ��rr�
r����n ��rr�
r����n

k � j and k 	 n�� m m�n

k � j and k � n�� m
�n
j

�
rj

Figure 
�� Summary of time� and space� optimal strategies for hypercube

Now� the �cli�� suggested in Fig� 
	 does not occur at a particular rank� but rather the cli� is
distributed among ranks� If a view groups by a set of attributes whose domain sizes multiply to
something less than m� the total number of rows in the raw data� then that view behaves as if it
is �below the cli��� i�e�� of rank less than k� If the product of the domain sizes for the grouping
attributes of a view exceeds m� then this view is �on top of the cli��� However� the fundamental
behavior suggested by Fig� 
	 is unchanged� As we �drill down� by grouping on progressively more
attributes� our views stay �xed at the maximum size� until at some point the size drops� whereupon
the size of views decreases exponentially�

The analysis of the space�optimal case does not change� For the time�optimal case� we need to
replace the condition k � j by �most of the space used by the various queries is among those views
whose product of domain sizes for grouped attributes is less than m�� Likewise� k 	 n�� becomes
�most views have a product of domain sizes for their grouped attributes that exceeds m��

� Conclusions

In this paper we have investigated the problem of deciding which set of cells �views� in the data cube
to materialize in order to minimize query response times� Materialization of views is an essential
query optimization strategy for decision�support applications� In this paper� we make the case that
the right selection of the views to materialize is critical to the success of this strategy� We use the
TPC�D benchmark database as an example database in showing why it is important to materialize
some part of the data cube but not all of the cube�

Our second contribution is a lattice framework that models multidimensional analysis very well�
Our greedy algorithms work on this lattice and pick the right views to materialize� subject to various
constraints� The greedy algorithm we give performs within a small constant factor of the optimal
solution for many of the constraints considered� Finally� we looked at the most common case of the
hypercube lattice and investigated the time�space trade�o� in detail�

	�� Future Work

We are investigating the following topics�

� Progressively more realistic cost models� Models that capture indexing and clustering are the
�rst step in this direction�

� Data cubes that are stored in MDDB systems� The poor scalability of many MDDB systems
is due to the fact that they materialize the entire data cube� Thus the selection of the right
cells to materialize is very important here too�

��



� Dynamic materialization� The views� in some sense� form a memory hierarchy with di�ering
access times� In conventional memory hierarchies� data is usually assigned to di�erent memory
stores �like cache� or main memory� dynamically based on the run time accesses� It would
be interesting to compare dynamic materialization with the static materialization scheme we
investigate in this paper�

Acknowledgements

We thank Bala Iyer and Piyush Goel at IBM Santa Teresa Labs for help with the experiments�

References

�CS�	
 S� Chaudhuri and Kyuseok Shim� Including Group�By in Query Optimization� In Pro�
ceedings of the Twentieth International Conference on Very Large Databases �VLDB��
pages ��	!���� Santiago� Chile� 
��	�

�ESS
 Arbor Software Inc� Multidimensional Analysis� Converting Corporate Data into Strate�
gic Information� White Paper� At http���www�arborsoft�com�papers�multiTOC�html

�G��
 Goetz Graefe� Query Evaluation Techniques for Large Databases� In ACM Computing
Surveys� Vol� ��� No� �� June 
����

�GBLP��
 J� Gray� A� Bosworth� A� Layman� H� Pirahesh Data Cube� A Relational Aggregation
Operator Generalizing Group�By� Cross�Tab� and Sub�Totals� Microsoft Technical Report
No� MSR�TR�������

�GHQ��
 A� Gupta� V� Harinarayan� and D� Quass� Aggregate�Query Processing in Data Ware�
housing Environments � In Proceedings of the ��st International VLDB Conference� pages
�������� 
����

�HNSS��
 P� J� Haas� J� F� Naughton� S� Seshadri� L� Stokes� Sampling�Based Estimation of the
Number of Distinct Values of an Attribute In Proceedings of the ��st International VLDB
Conference� pages �

����� 
����

�OG��
 P� O�Neill and G� Graefe� Multi�Table Joins Through Bitmapped Join Indexes� In
SIGMOD Record� pages ��

� September 
����

�TPCD
 F� Raab� editor� TPC Benchmark�tm� D �Decision Support�� Proposed Revision 
���
Transaction Processing Performance Council� San Jose� CA ��

�� 	 April 
����

�Rad��
 Alan Radding� Support Decision Makers With a Data Warehouse� In Datamation� March

�� 
����

�STG
 Stanford Technology Group� Inc� Designing the Data Warehouse On Relational
Databases� White Paper�

�TM��
 J� P� Tremblay and R� Manohar� Discrete Mathematical Structures with Applications to
Computer Science� � McGraw Hill Book Company� New York� 
����

�X�	
 John Xenakis� editor� Multidimensional Databases� In Application Development Strate�
gies� April 
��	�

�	



�YL��
 W� P� Yan and P� A� Larson� Eager Aggregation and Lazy Aggregation� In Proceedings
of the ��st International VLDB Conference� pages �	������ 
����

��


